
Learn Arduino
Make Cool Stuff!

The How-To Manual for
The YourDuino Basic

Starter Set
By Terry King terry@yourduino.com

Version 1.0 February 15, 2013

 2

This work is licensed under Creative Commons Attribution-ShareAlike 3.0 Unported License.
You are free:

• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work
• to make commercial use of the work

Under the following conditions:
• Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).
• Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.

With the understanding that:

• Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

• Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

• Other Rights — In no way are any of the following rights affected by the license:
Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;
The author's moral rights;
Rights other persons may have either in the work itself or in how the work is used, such as
publicity or privacy rights.

• Notice — For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to this web page.

http://creativecommons.org/licenses/by-sa/3.0/
This work is licensed under Creative Commons Attribution-ShareAlike 3.0 Unported License

 3

TABLE OF CONTENTS
INTRODUCTION:	 LEARN	 ARDUINO	 -‐	 A	 HANDS-‐ON	 APPROACH	 ...	 4	
YourDuino.com	 Basic	 Starter	 Kit	 Components	 ...	 5	
LET'S	 GET	 STARTED:	 INSTALL	 THE	 ARDUINO	 SOFTWARE	 ...	 7	
RUN	 THE	 ARDUINO	 "IDE"	 SOFTWARE	 ..	 8	
It’s	 Software	 Time:	 Writing	 Arduino	 Sketches	 ..	 8	

HARDWARE	 AND	 SOFTWARE	 ...	 10	
We	 Are	 Making	 Circuits	 ..	 17	
Sensor	 Inputs:	 ..	 18	
Action	 Outputs:	 ..	 18	
Software	 Decisions	 ...	 19	
Real	 Hardware	 ...	 19	
Digital	 Input/Output	 Connector	 ..	 20	
Analog	 Input	 Connector	 ..	 21	

YourDuino	 STARTER	 SET	 CONTENTS	 ..	 22	
MAKING	 CONNECTIONS	 ..	 23	
Diagrams	 ..	 24	
Digital	 Input	 Examples	 ..	 24	
Analog	 Input	 Examples	 ...	 25	
Voltage	 Dividers	 ..	 26	
Using	 Relays	 ..	 27	
How	 Relay	 Contacts	 Work	 ..	 28	

ANALOG	 OUTPUT	 EXAMPLES	 ...	 29	
Make	 an	 LED	 Dimmer	 ..	 29	
Make	 a	 multi-‐color	 dimmer	 with	 the	 RGB	 LED	 ...	 29	
Make	 a	 Multi-‐Sound	 Beeper	 ..	 29	

CONCLUSION	 ..	 31	
The	 Arduino	 Community	 ..	 31	

 4

This How-To document matches the YourDuino Low-Cost Starter Set and all it's components.
http://yourduino.com/sunshop2/index.php?l=product_detail&p=360 (Ships to USA only in this box)
The contents of the Set look like this:

(The same Kit contents without the plastic box is available worldwide at a low price here:)
http://yourduino.com/sunshop2/index.php?l=product_detail&p=244

This manual will show you how to use each of the components in the kit, and give you software
Sketch examples for each one. Then you combine some components to make examples of
Automatic Systems such as a lighting controller. You're probably here because you're
interested in MAKING things with Arduino. The first questions:

• What can you do with a MicroComputer like Arduino?
• How do you get started?
• What Can You Do with Arduino?? http://yourduino.com/whatcanido.htm (To be Updated!)

To get started, we think you need 3 things:

• Clear Information
• Practical, Low-Cost hardware to learn with
• Detailed How-To DO IT

INTRODUCTION: LEARN ARDUINO - A HANDS-ON APPROACH

 5

YourDuino.com Basic Starter Kit Components

YourDuinoRobo1 Arduino-compatible with built-in 3-pin I/O
connectors, higher current 3.3V supply

Upgraded Arduino Compatible: with ATMEGA328 Processor.
BOTH 5.0V and 3.3V Operation with onboard regulator.

Opto-Isolated 2-channel Relay Board

With high-current relay, AC250V 10A ; DC30V 10A

8CM Breadboard

Breadboard with power and Ground busses. This is used to make quick
and easy and usually non-permanent connections between Arduino and
different electronics components, chips, resistors, LEDs etc.

(5) Big push-button switches [Digital Input]

These large 12mm pushbutton switches have a nice CLICK action.

(2) 10K Potentiometers that fit breadboard well [Analog Input]

Hand operation - Plugs into breadboard.

(5) 10K PhotoResistors (Light sensors) [Analog Input]

PhotoResistor type 5516 5-10K. These are small Photoresistors
that have a resistance of 10K ohms at 10 lux.

Digital temperature sensor DS18B20 [Digital Signal Input]

"1-Wire" Digital Temperature sensor.

(10) LEDs of 5 different colors, plus 220 ohm resistors [Digital or
Analog Output]

1 RGB LED (Red-Green-Blue Multicolor) [Digital or Analog Output]

 6

Buzzer Module (makes sound with voltage applied) [Digital Output]

This small sound module can be driven by an Arduino output pin. When
the pin is set to HIGH (with the - terminal of this module grounded) it
puts out a constant buzz or beep.

Beeper Module (Makes different sounds/tones with Arduino TONE
Library) [Analog Output]

This small sound module can be driven by an Arduino output pin. The +
pin is marked on the case. A pulse of current will make it click. A series
of pulses will cause it to output a tone, and you can control the
frequency.

Servo Motor (Mechanical positioning from digital pulses] [Digital
Signal Output]

3-pin cable to separate wire ends that connect the Robo1 to any
device

3-pin cables with 3-pin connectors that fit the Robo1 and various
Electronic Bricks etc.

Pin Connector Strip

40 wire flat rainbow color cable that can be separated to make
many different cables

 7

LET'S GET STARTED: INSTALL THE ARDUINO SOFTWARE

This document will be available online here on the ArduinoInfo WIKI: (http://ArduinoInfo.Info)
and also as a printable PDF.
Making things with Electronics and MicroComputers is different than Woodworking or
Metalworking. There are a couple of little problems: Uh Oh!

• Electricity is INVISIBLE !
• AND, Software is INVISIBLE !

Not to worry! We will show you the ways to make these powerful tools Visible so you can use
them.

The Arduino "IDE" software looks virtually the same on Windows, MAC or Linux, but the
Installation procedures are different. Below, you can pick which one you need.

Oh.. "What's this IDE thing all about anyway" ?? The Arduino Integrated Development
Environment http://en.wikipedia.org/wiki/Integrated_development_environment is the software you
use on your computer to write software Sketches and then upload and run them on the
YourDuino hardware. The IDE is like a word processor for writing software.

Now, go to the official Arduino site to download and install the software for your operating
system:

• MAC: http://arduino-info.wikispaces.com/ArduinoInstall-MAC
• WINDOWS: http://arduino-info.wikispaces.com/ArduinoInstall-WIN
• Linux: http://www.arduino.cc/playground/Learning/Linux

After Installation, or if your board is already installed, continue here:

CHECK OUT THE YourDuinoRobo1
On the right, let's look at some of the
features of the Robo1 board as used in
these Starter Sets. At the lower left is the
PWR LED, which should light up whenever
the board is plugged into a USB connection,
or has power from an external power supply.

At the upper left there are two green LEDs, which will blink when a software sketch is being
downloaded to the board, or other data is being transferred over USB.
At the top is a red LED, which is internally connected to pin 13 through a current-limiting
resistor. It should blink after you load the example BLINK software sketch. The colored 3-pin

 8

connectors make it easy to connect many input and output devices. The Vcc (+5V) pins at upper
right and the (Ground) pins at the lower right are good for connections to breadboard etc.

(FOR ALL OF US, NOW: MAC, WINDOWS, LINUX):
RUN THE ARDUINO "IDE" SOFTWARE

You should have followed the IDE Installation for your PC/MAC Operating System and now
you've got your YourDuino plugged in and running. The POWER "ON" LED is on, right? And the
"13" LED is blinking? (This may be a little different for the various YourDuino versions and the
'13' LED may or may not blink now).

Soon we'll start connecting the things in the Starter Set, but first we'll use that built-in Pin 13
LED to get started.

It’s Software Time: Writing Arduino Sketches

Let's take a little while to get used to writing Arduino Software, then we'll come back and start
connecting your Starter kit parts and making more interesting things. We will give you software
examples for each of the devices in the Starter Set.

On your desktop you should now have the Arduino ICON like this:
Click on it, if you haven't already, and you should see the "Arduino IDE Window"
pop up like this:

You'll use this IDE (Integrated Development Environment) to make Software VISIBLE! With it
you will develop your own software to make Arduino into what you want it to be.

FIRST, YOU MUST SET THE CORRECT BOARD TYPE AND SERIAL PORT
In the Arduino IDE top menu click <Tools> and then <Board>. You will see a drop-down menu that
looks like this (left). For the YourDuinoRobo1 click Arduino Duemilanove. (Same for PC and MAC)
SERIAL PORT: Now click <Tools> and then <Serial Port>. On the PC There will usually be only
one choice.

 9

On the MAC, see the example on the right. Pick
the entry that has both "tty" and "usbserial" in it.

OK, you're ready to upload software sketches to
your YourDuino or Arduino!

Sketches
The visible text of an Arduino software program is
called a SKETCH. But the Sketch becomes alive when you upload it to your Arduino. Let's walk
through Editing a Sketch and Verifying it and Uploading it:

Click on FILE and then move your mouse (slowly..
It's Fussy!) over EXAMPLES to BASICS and then to
BLINK so it looks like this (On the right):
And CLICK. There are lots of examples that come
with the free Arduino software system, and we will
look at some of them later, as well as make our own
very soon.

A new IDE window should pop up and look
like this:

Wow.. A bunch of new stuff.

Let's slow down and "Watch Closely Now"!

Notice that a lot of the text is GRAY. All of
that is just "Comments" for you to read to
help understand the Sketch. When you write
software, you should also use "Comments" to
explain to others what you are doing.
(Arduino itself totally ignores these
comments).
Now, let's go through Editing software, Verifying it, and Uploading it to see Arduino DO it. We
will use the YourDuino version of
Blink: http://arduino-info.wikispaces.com/YourDuinoStarter_Blink
Click on the link to see its page.
Now, highlight all the code (in the gray area), do <Ctrl>C to Copy, in the IDE, the New button to
get a blank page and do <Ctrl>V to Paste it in. Click Verify to make sure it's OK. You should see
"Compiling Sketch" and then "Compiling Done". Now look at the sketch in detail. Take some time
to read it slowly.

 10

Every Arduino Software Sketch has two main parts:

• SETUP - Runs Once at the beginning
• LOOP - Runs over and over again, forever

You will read a LOT of program "Code" that other people wrote, in the future. You HAVE to
"Watch Closely Now" and really see the details. Read the YourDuinoStarter_Blink example
through carefully, a couple of times. Note the colored special words that are Instructions.
These are unique words that tell Arduino what to do. They have to be spelled perfectly!

What SETUP does: Tells Arduino about things that need to be done once. Arduino Digital Pins
can be either INPUT or OUTPUT. You have to tell Arduino when a Pin will be used as an
OUTPUT. In this example, there is one line that tells Arduino that Pin 13 must be an OUTPUT.

Note the COLOR of the lettering. The Arduino IDE changes the color of words as it recognizes
them as special instructions. Let's mess with them:

pinMode: Note that when Instructions are two words run together, like pinMode, the beginning
of the SECOND word is Capitalized. Change the Capital "M" to "m". Note the color changes to
black. Hmmm.
Click the VERIFY button.

You will get an ERROR message:

Fussy, Fussy, Fussy! Yep, every letter has to be correct and also correct upper or lower case.

Change it back. Check the color. Click Verify again. OK??

What LOOP does: Loop contains all the active parts of your Sketch that continue to run after
SETUP is finished. It will run over and over again, forever, or until you stop it or power down.

What does VERIFY do??
A LOT! More details later, but Verify is a program in your main computer that goes through
every Instruction in your Sketch (Ignoring "Comments") and checks it against the list of valid
Instructions, and checks that the structure and sequence of the statements in the Sketch are
correct. Fussy, Fussy! If they're OK, then it "compiles" or "translates" the sketch into the
machine code that Arduino actually runs on. It saves that 'ready-to-run' code for you to Upload
to Arduino and run. Other systems would call this process "Make" or "Compile".

HARDWARE AND SOFTWARE

 11

What does UPLOAD do??
First, Upload runs Verify to check and compile your program. Then it communicates to your
Arduino over the USB connection, resets the Arduino chip, and talks to software already on
Arduino (called the BOOTLOADER(W)): http://en.wikipedia.org/wiki/Bootloader#Boot_loader to load
your new program into the Arduino's memory. Then it restarts Arduino and your program runs
it's SETUP section and then repeats the LOOP section.
[NOTE: The (W) Means this is a Wikipedia link.]

Start Making Changes:

Ok, let's make a few changes to the YourDuinoStarter_Blink program:

The LOOP section of your program does all the instructions in the section, and then "loops"
back to the top and starts it again, over and over.

NOTE: the "Brackets" { and }

Notice that the beginning and end of the section is "inside brackets". You will see many sections
of bigger programs that are grouped by these "brackets".

Now, let's look in detail at the instructions:

Instruction: digitalWrite

This instruction sets an OUTPUT PIN to either HIGH (connects it to +5 V) or LOW (Connects it
to GND).

Remember: HIGH = 1 = ON = 5 Volts and LOW = 0 = OFF = 0.0 Volts

So, the first line in LOOP sets PIN 13 to HIGH. This means Pin 13 is connected to +5 Volts, and
current flows through the resistor and LED that are already connected to pin 13. The LED
lights up.

Instruction: delay

The delay instruction just waits for a period of time. The VALUE used with delay is in

 12

Milliseconds (1/1000 second). So delay (1000); waits for 1000/1000 seconds (1 second). We'll
change that soon.
NOTE: the ";" (Semi-Colon)

Notice that every instruction is followed by the character " ; " which is like a period that tells
the end of a sentence. Run-on sentences will make you stay after school to fix your error
messages!

Change the delay so that the LED blinks differently:

Time to mess about and try some things! Maybe we'll break it. Then we'll fix it..

Suggestion: Save your own version of BLINK so you can always go back to the original one. Go to
File and Save As and call it something like MyBlink. This will go in your SKETCHBOOK where
you'll save your own programs.

Now go change the VALUE in a delay statement to change the way the LED blinks. Think about
the 4 instructions in LOOP. What's happening??

• Turn the LED on. Wait and look at the LED.
• Turn the LED off. Wait and look at the dark.

So, let's change the ON time to be short. Maybe 50 Milliseconds. That's 1/20 of a second. Then
try 10 milliseconds. The LED is only on 1/100 of the time. Can you still see it blink? How about 1
millisecond?
Each time you make a change, click Upload, which will first Verify and Compile your
program and then send it to Arduino. Notice that each time you do this the LEDS that are
marked "Tx" (Transmit) and "Rx" (receive) flash as your main computer communicates with your
Arduino.
Try some combinations of ON and OFF delay () times. Like ON 1000 and OFF 50.
Try making both ON and OFF times shorter and shorter.
If you make the ON and OFF times short enough your eye will no longer see blinking, because
of "Persistence of Vision"(W): http://en.wikipedia.org/wiki/Persistence_of_vision which happens when
there are more than about 25 blinks per second. So, hmmm.... if you make the LED be ON for
1/50 of a second and OFF for 1/50 of a second that should do it. So try 1000/50= 20
Milliseconds. Put 20 for both the ON and OFF times. What do you see?? How about 10
Milliseconds each? Depending on your personal eye's physiology, at some speed you will not see
any more blinks. Young people can usually see faster blinks.

All right. You're the Programmer! You can save any of the sketches for use later on. Go to
File>Sketchbook and you'll see them. Next, we'll start hooking up the Electronics Parts in your
Starter Set! And we'll give you example Software Sketches for each one of them.

 13

BREADBOARDS, WIRES, PINS, CABLE and ELECTRONICS COMPONENTS

Arduino is great but sometimes connecting interesting things to it can be a pain. We tried to
make it easier for you. We will use a BREADBOARD (W): http://en.wikipedia.org/wiki/Breadboard
for most connections.

The idea here is that wires and electronics parts like LEDs and RESISTORs have wire leads
that can be plugged into the BREADBOARD and then easily be removed or changed. The holes in
the BREADBOARD go down into little sockets with metal contacts.

Sections of the BREADBOARD have rows or columns that are all connected together, making it
easy to have multiple things connected together.

Here's some detail of how the BREADBOARD that we use in this kit is organized:

The Horizontal Rows have 5 holes (abcde) and (fghij) with sockets that are connected together.
Any wires or parts that are plugged into one of these rows are connected together.

The Vertical Columns (+Red and -Blue) have the same connection running all the way down. We
will use these to connect 5V on our YourDuino board to the +Red and to connect GND on our
YourDuino board to -Blue. Then any time we need to connect to GND, we just plug a wire or part
into the -Blue column, and any time we need to connect to 5V, we just plug a wire or part into
the +Red column.

 14

Now let's look again at the YourDuinoRobo1 board and where we will make connections there.
Later we will look at the board in a lot more detail, but for now let's just hook up a few things
and make them work.

The first thing we want to do is connect GND on the board to a -Blue column on the breadboard
and 5V on the board to a +Red column. Notice the pin connectors on the far right of the
YourDuinoRobo1, labeled TS- (which is Ground) and TS+ (which is +5V). They are convenient to
connect +5V and Ground to the breadboard.

We will orient the breadboard left-to-right so it can sit in front of the YourDuino board so we
can easily make many connections and changes.

So it will look something like this:
We will mainly use the upper +Red
row and the bottom -Blue row.
Often we think of these parallel
lines as "Rails" like railroad rails.
The top red rail is the "+5 Volt
Rail" and the bottom blue rail is
the "Ground Rail". "Voltage Rails"
(W):http://en.wikipedia.org/wiki/Volt
age_rails a common terminology in
electronics.

 15

HOW TO THINK ABOUT ARDUINO

We will use this picture to think about how we connect things to Arduino. It shows the +5V and
Ground "Rails". (More about Diagrams later).

What about wires? Locate the "40 pin flat cable" and the "Male-Male Pin Strip Connectors" in
your kit.
To start we will connect the "5V Rail" to "5V" on the YourDuino board.

WIRES
We will use the "40 pin flat cable" in your kit for wires. It looks like this:

You can easily strip off one or more wires, or strip off a section to use as a cable. The ends of
these wires are female connectors that can plug onto the connectors on the Robo1 or a "Sensor
Shield". But what about the breadboard?? It needs a wire with a male end to plug into it. The
pin strips (Right) are the answer. Your kit has 2 of these with 40 pins each. You can cut or snap

 16

off the number of pins you need. For now, snap/cut off about 6 single pins. It's easier to snap
off just 1 pin if you grab it with a small pair of pliers of some kind. Or you can "cut" in between
the pins with strong scissors or wire cutters.
Here's the way this works:

You can make any combination of male or female cable ends of different widths.
Now, let's connect your Breadboard to the
YourDuino board. Unplug the USB cable before
making any big changes!

Strip off 1 Blue wire and 1 Red wire from your flat
cable. Run the Red wire from a +5 (TS+) pin on the
YourDuino to the +Red Rail on the breadboard. Run
the Blue wire from a GND (TS-) pin on the
YourDuino to the -Blue Rail on the breadboard. Now
it's easy to connect things to the 5V (+Red) Rail or
the GND (-Blue) Rail. We show +5 and Gnd connected
to the TS pins on the far right side of the
YourDuino board.

See the close-up photo here,
and plug a 220 Ohm (Red-
Red-Brown) resistor [TBD:
Color Code] and a red LED
(Long pin to the left) into the
Breadboard as shown. (Use
male-male pins where you need a male end to plug into the breadboard or YourDuino).
Now add a wire (Black is shown) from the same vertical strip as the LED to the GND Rail.
Connect another wire (Green is shown) to the same vertical strip as the left end of the resistor,
and use a pin to plug it into the YourDuino socket labeled 13.

Male pins (left)

Female wire ends 3-pin strip

3-pin cable end

 17

We Are Making Circuits

OK we need to stop for a minute and make sure we understand how the breadboard, the
components and wires make up Circuits we want. A circuit has one continuous connection from a
source of electricity and back to the other terminal of the source. Let's follow what we did
above:

Start:
1. WIRE from YourDuino Pin 13 TO 5-hole Vertical Strip 1 - (fghij) (Column 1, strip fghij)
2. 5-hole Vertical Strip 1 - (fghij) TO Left end of 220 ohm Resistor
3. Right end of 200 Ohm Resistor TO 5-hole Vertical Strip 4 - (fghij) (Column 4, strip fghij)

4. 5-hole Vertical Strip 4 - (fghij) TO Left (long) end of LED
5. Right end of LED TO 5-hole vertical strip 6 - (fghij)
6. 5-hole vertical strip 6 - (fghij) TO Ground Rail (Blue horizontal strip at bottom)
7. WIRE from Ground Rail (Blue) TO YourDuino Ground pin

OK, that's pretty laborious, but TRACE the circuit through those parts. What if we said it
easier from now on, like:
1. WIRE from Pin 13 to Strip1
2. 220 Ohms resistor from Strip1 to Strip4
3. LED from Strip4 (long lead) to Strip 6
4. WIRE from Strip6 to GND Rail
5. WIRE from GND Rail to YourDuino GND pin

Power Up and RUN

Time to Power Up! Plug the USB cable from your computer into the YourDuino. Its PWR LED
should come on. And the pin 13 LED should be blinking in the way you last programmed it. If
necessary, load the original GOBP (Good Old Blink Program!) and Upload it to YourDuino. Your
setup should look like the photo on the right above. AND the LED you just wired up on your
Breadboard should blink the same as the 13 LED on YourDuino. NO? Recheck that you have it
wired like the photos, and the LED's longer lead is to the left.
Let's figure out what's really happening here. Unplug the wire from YourDuino pin 13 (keep the
pin with it). Now try two things:

• Plug the free end of the wire into the +5V Rail. It should light up.
• Plug the free end of the wire into the GND Rail. It should be off.

Try it a few times, like 1 second to +, 1 second to GND. Now plug it back into YourDuino Pin 13.
It should blink again.
What's happening here?? The YourDuino is doing exactly the same thing automatically that you
did manually! It is connecting the circuit connected to pin 13 to the +5V Rail and then connecting
it to the GND Rail.

 18

Another Digital Output Device: Try adding a connection to the Buzzer (has a black back and a
(+) symbol on one lead which is usually longer) (not the Beeper) temporarily from Pin 13 to
Ground. It should make a noise in the same timing as the LED. (See the "Components
Identification" document). You could use two more wires plugged onto the Buzzer leads.

That's how "Digital Outputs" work. They connect something either to the +5V Rail or the GND
Rail.

OK, you have a good beginning in setting up YourDuino, Programming it, and wiring up external
devices.

Now, let's slow down a bit. In our next section, we'll think about what's going on here, which as
we mentioned above is CIRCUITS.

And, what's all this stuff about PINS, BITS , ONES and ZEROS , HIGH and LOW... ? ?

In the next section:

PINS...
BITS...
ONES and ZEROS...
HIGH and LOW...
... YOU'LL KNOW!

Here is how we will think about Arduino and the three main things that are part of all automatic
systems:

[Sensor Inputs | Software Decisions | Action Outputs]

All automatic systems, from a simple thermostat to the Mars Rover have those 3 parts.

Sensor Inputs:
These can be simple like a pushbutton switch or complex like a GPS receiver. There are
hundreds of possibilities for sensing things in the Physical World.

Action Outputs:
These can be simple like an LED or complex like the motors and motion control of a Robot.

 19

Software Decisions

This is where you decide what Sensor Inputs Arduino will look at, what Decisions it will make ,
and what Action Outputs it will cause to happen. You make this actually work by writing
software code statements. The software should be organized so these 3 things happen over and
over again in Loop:

• READ SENSORS
• MAKE DECISIONS
• TAKE ACTIONS

Real Hardware

Time to stop talking and hook more real things up to those INPUTS and OUTPUTS. Look at
YourDuino again for a minute. You'll get to know it well:

Take a couple of minutes to look at
it closely. If you haven't done much
detailed electronics it looks like a
jumble. But slow down and look at
the different parts.

What's important to us first?? We
need to connect stuff, so we'll look
at the connectors.
All regular Arduinos have the same
overall size and the same long black
connector strips across the top and bottom edges. These are female sockets that pins can plug
into. YourDuino has added two sets of 3-pin connectors to make it easy for you to connect
things. Let's look at the details. First, here is the top connector:

The Black Sockets at the top (Places you can connect wires and devices to) are numbered 0 to
13 from right to left. These are the DIGITAL INPUT/OUTPUT connections. You can push
wires or the pins on the end of wires into those "Black Holes" and connect them to many
different devices. That's the traditional Arduino way. But it's easier to use the Robo1
connector pins.

 20

We'll be looking at many of the different INPUT DEVICES and OUTPUT DEVICES you can
connect to Arduino.

3-pin YourDuino Connectors

NOTE: If you have a regular Arduino/YourDuino you can plug a Sensor Shield: http://arduino-
info.wikispaces.com/SensorShield on top of it and have the same type of connectors.

YourDuinoRobo1 adds two sets of connectors to the usual Arduino arrangement. The DIGITAL
Input/Output connector shown above has 3 rows of pins (White, Red and Black). Look at the
labels on the left from top to bottom:

S (Signal) Is the White row in this photo. (Some YourDuinos have all black connectors, however)
This is the functional connection to whatever devices you use. These pins are connected to the
black strip sockets above that have the same numbers.

+ (+5V RAIL) is the Red row

- (GND RAIL) is the Black row.

This arrangement lets you connect devices to YourDuino with a 3-pin cable that provides +5V
and GND as well as the SIGNAL connection. Notice that +5V and Gnd are also easily available on
the (TS-) and (TS+) pins on the far right, not just the one 5V pin on regular Arduinos.

Example: Look at the ServoMotor included in your kit. It is like those used in Radio Controlled
models. It has a 3-pin plug with black-red-white wires (or brown-red-yellow) that can plug
directly on the 3 pin connectors on the YourDuino in a vertical direction, and connect to GND,
+5V and SIGNAL. Soon we'll plug your Servo in and try it out.

Digital Input/Output Connector

Look closely at the connector above. Notice that it is numbered: 11 10 9 6 5 3 . This means that
those YourDuino pins are the ones made available on the 3-pin connectors. Also, all of those pins
have the capability for "PWM" which means "Pulse Width Modulation" and can be used to
control the amount of power sent to an output device, dim LEDS etc. We'll try that out soon.

 21

Analog Input Connector

The row of black female sockets on the bottom of the photo above is the other part of the
standard Arduino connectors. It includes 6 ANALOG INPUT pins, labeled "0 ANALOG IN 5"
which really means Analog Inputs 0 through 5. Analog inputs can be used to measure voltages,
not just see HIGH=1 or LOW=0 like Digital Inputs. We'll use them in a while to measure things.

On this Analog Input connector there are 3 rows from Top to Bottom in the opposite order of
those at the top. These are:

- (GND RAIL) is the Black row.

+ (+5V RAIL) is the Red row

S (Signal) Is the Purple row in this photo. (Some YourDuinos have all black connectors, however)

More about ANALOG INPUTS and other uses of these pins later.

 22

Now, let's get practical and look at the contents of the Starter Kit. Take each component out
and get a good look at it, especially its connections. Refer to the Component Identification
document on Page 5 for details. We'll use the following chart to see how things work together.

On the left are the Sensor Inputs. On the right are the Action Outputs.

We have provided short Software Sketches: http://arduino-
info.wikispaces.com/YourDuinoStarterSoftwareSketches on http://arduinoinfo.info/ where you can cut
and paste code to test and learn about each of the different Kit components.

YourDuino STARTER SET CONTENTS

 23

Let's look again at Arduino in more electrical detail. The diagram below shows how we will
connect things to Arduino and what it means if something is connected or switched to HIGH=5V
or LOW=0.0V :

Digital “Signals”

When a PIN (or wire or connection) changes from 0 to 1, or 1 to 0, we say it is a SIGNAL. Kind
of like someone raising up a flag or lowering it.

DIGITAL OUTPUT "SIGNALS": An LED or Buzzer connected to to an Arduino OUTPUT can
"signal" you that something has happened.

DIGITAL INPUT SIGNALS: If you push a button that changes an INPUT, you "signal" Arduino
that something should be done.

BITS !
Oh, um.. What’s a BIT anyway? It is a Binary InTeger, which is a number, which has only two
possible values: 0 and 1. Each YourDuino Input or Output PIN is one BIT inside YourDuino. (A
GROUP of 8 BITS is called a BYTE. Bet you knew that!).

MAKING CONNECTIONS

 24

Diagrams
Often an actual circuit (like the Arduino and Breadboard hookup) gets to be a confusing bunch
of wires and components going in all directions. And Printed Circuit Boards like the Arduino
UNO are not obvious at all. To keep our heads together, we draw Circuit Diagrams (like the one
above) to show what we're trying to do. Notice the Symbols used in the diagram for things
like: SWITCH, RESISTOR, and LED. And there are Labels on connections, like GND, INPUT,
and OUTPUT etc. Note the parallel lines of +5V HIGH on the diagram, and GND – LOW on the
diagram which are labeled "RAILS". These are much like Railroad RAILS across the top and
bottom. Almost everything that happens on Arduino is between the +5V HIGH RAIL and the
GND-LOW (0.0V) RAIL. Diagram for the Arduino UNO: http://arduino-
info.wikispaces.com/file/view/Arduino_Uno_Rev3-
schematic.jpg/346644662/Arduino_Uno_Rev3-
schematic.jpg

Digital Input Examples
NOTE: Most of the example software Sketches send
messages to the "Serial Monitor" that is part of the
IDE, like the example below on the right. See How-To
Serial Monitor: http://arduino-
info.wikispaces.com/YourDuino-Serial-Monitor

ON = 1 = HIGH = +5 Volts
OFF = 0 = LOW = 0.0v = Ground

Let's check some of these out:

• Pushbutton Switches: We will connect these to a
Digital Input and use them with a "Pulldown Resistor"
(shown above) that will keep the input pulled
LOW=0=OFF until you push the button and the switch
pulls the input HIGH=1=ON.

• PhotoResistors: These change their resistance to be
low when light hits them. We will connect them just
like the pushbutton and when enough light hits them they will pull the input HIGH. (Breadboard
Photo)

Hook up a pushbutton switch and 10K pulldown
resistor like the photo above right. Plug the switch so two close-
together pins are down.
The connections are:

1. Wire from +5V on YourDuino to + HIGH Rail (Red)
2. Wire from GND on YourDuino to - LOW Rail (Blue)
3. Wire from High Rail to Switch (left pin)
4. 10K resistor from Switch (right pin) to LOW Rail

Wire from Switch (right pin) to YourDuino Pin 3

 25

Upload and run this sketch. Open the Serial Monitor. Push the
button. The LED 13 on the YourDuino should light, and the Serial
Monitor window should look like this (right): THEN replace the
switch with a PhotoResistor as shown on the right. Make it quite
dark and the LED should go off. More light and the LED will light.
Light makes the PhotoResistor have a low resistance.
Read through the sketch to understand how it works and how you
would use pushbuttons in the future. There's another Pushbutton
example that controls 2 LEDs HERE:
http://arduino-info.wikispaces.com/YourDuinoStarter-ButtonInput

Resistors

Resistors limit the amount of current.
“Pullup” or “Pulldown” resistors only need to allow enough current to allow an input HIGH or
LOW until a switch or other component “Pulls” the input to an opposite state.
Typical 10K (10,000 Ohms) Current Limiting resistors allow some higher desired current to flow,
to some component like an LED. (Typical 220 Ohms.

Analog Input Examples

With Digital Inputs, whatever won the "pullup-pulldown wars"
decided if it was 1 or 0. With Analog Inputs, Arduino can see all the
VALUES in between HIGH and LOW and make decisions based on
those values. An Analog input can sense the Value of things like light
levels, battery voltage, or potentiometer position. We'll use the next
2 parts to show how this can work.

• Potentiometer: Look Closely Now at the Potentiometer in the Kit
(right). It has 3 terminals that will be connected to: (+5V HIGH)
(Gnd LOW) and "Wiper" that will be connected to the Analog
Input. When you turn the pot you can move to any voltage in
between +5V and Gnd=0. Connect a Pot (Potentiometer).

Turn it clockwise towards the Top=HIGH=5V or Bottom=LOW=0v and see
the values change on the Serial Monitor.

• PhotoResistor: We'll use this same component and pulldown

Example Software for this Section: http://arduinoinfo.wikispaces.com/YourDuinoStarter_ItsOnOff

Example Software for this Section: http://arduino-info.wikispaces.com/YourDuinoStarter_AnalogValue

 26

resistor, as in the Digital Input example above, but connect it to an Analog Input so we
can see all the values as the light level changes.

Read the Sketch to see how things should be connected
Voltage Dividers
Now let's figure out this Voltage
Divider stuff. Look at the diagram on the
right. A Voltage Divider has 2 resistors
connected in Series, connected to a source of
(V)oltage and a (G)round or common point. The
connection in the middle between the two
resistors is the (S)ignal Output, and is some
fraction of the Input Voltage. So we can
connect a pot used as a Voltage Divider into the breadboard and connect it with wires.. As we
move the pot, the output voltage going to YourDuino varies from 0 to 5 Volts and all the values
in between. The way Arduino works gives values from 0 to 1023. If we have a photoresistor
connected in series with a resistor, we have a voltage divider that changes with the light
intensity, giving us a varying voltage.

What if you want to measure voltages that are more than 5 volts? You use a Voltage Divider to
reduce the voltage. If you make a 3 to 1 ratio voltage divider (say, 20K for the top section and
10K for the bottom), then you can read voltages from 0 to 15 volts. Good for automotive
batteries. You could to this by putting two of your 10K resistors in series for the top resistor.

Example Software for this Section: http://arduino-info.wikispaces.com/YourDuinoStarter_2AnalogValues

 27

MAKING DECISIONS
Now we have two Values: Pot position and Light Level. Now we can make comparisons like < (less
than) or > (greater that) etc. and make decisions. Let's make an Adjustable Light Level
Sensor, which controls when a light comes on as it gets dark. It would this work like this:

• READ SENSORS
o Read Potentiometer value
o Read Photoresistor value

• MAKE DECISIONS
o Is Photoresistor value < (less than) Potentiometer value? (Darker)

• TAKE ACTIONS
o Turn Lights on

Read the comments in the software to understand the details of how this works. See the photo
on the right, which shows several of our examples combined to make a working Lighting Control
system. It includes:

• INPUTS:
o Potentiometer
o PhotoSensor

• OUTPUTS
o LED
o Relay

If you use some longer wires to extend the PhotoSensor to see outdoor light and connect the
Relay Board and have it control the light, you have a practical working system. All these parts
are in the Starter Set.

Using Relays

Digital Outputs are only ON or OFF. We have shown examples of LEDs and the Buzzer, but
sometimes you want to turn on or off higher-power devices like room lights, heaters, pumps,
motors etc. The Kit includes a 2-channel RELAY board. A relay is a switch that is thrown by an
electromagnet, and the switch can handle quite a bit of power. Let's look at some details:

On the left you see the end of the board with pins to connect to Arduino. We show it connected
in the previous photo. On the right you see the relay output connections that you'd use to
switch something like 12V or 240V lights, small motors etc. The relay is rated at 10 amps up to
250 VAC or 30 VDC.

Example Software for this Section: http://arduino-info.wikispaces.com/YourDuinoStarter_LightingControl

 28

How Relay Contacts Work
Look at the photo of the relay above. Notice the two sets of 3 screw-type terminals. They are
given these labels and arranged this way:

• NO: Normally Open
• COM: Common Connection
• NC: Normally Closed

Look at the diagram on the right. This shows the
switch that is inside the relay. This switch is "thrown"
by the electromagnet inside. The diagram shows that
COM is connected to the Normally Closed contact.
That's the case when the relay is off. When the relay is
turned on the electromagnet flips the switch up and COM is then connected to Normally Open.
So, if we want a lamp to be on when the relay is on, we connect our circuit from COM to NO.

Relay contacts

 29

Make an LED Dimmer
Earlier, you blinked an LED so fast it seemed constant. And by changing the % of time it was on,
you could dim it. Arduino has a built-in capability (PWM = PulseWidthModulation) on those upper

6 pins that the YourDuino brings out to 3-pin connectors.

See the photo on that page and read the detailed comments in the software to understand how
this works and what you can use it for.
How does this work? Like this:

• READ SENSORS (Read Potentiometer value)
• MAKE DECISIONS (Map 0 to 1023 Pot value to 0 to 255 PWM dimmer value)
• TAKE ACTIONS (Change the dimmer value)

Make a multi-color dimmer with the RGB LED
The Software Example page will show you how to connect the RGB three-color LED and make
thousands of different colors. You need to connect the RBG LED's 3 sections with 3 220 ohm
current-limiting resistors.

This looks best when the LED light hits a diffused object like a white Ping-Pong ball or small
plastic bottle from inside.

Make a Multi-Sound Beeper
This component doesn't make sound by itself like the Buzzer. You use the Tone command to
decide what sounds it will make. Connect your Beeper to Yourduino pin 10 and GND.

(which will play you a little tune...)

Read the comments in the software and try some changes.

ANALOG OUTPUT EXAMPLES

Example Software for this Section: http://arduino-
info.wikispaces.com/YourDuinoStarter_LED_PWM_Dimmer

Example Software for this Section: http://arduino-info.wikispaces.com/YourDuinoStarter_RGB-
LED-Fade

Example Software for this Section: http://arduino-info.wikispaces.com/YourDuinoStarter_BeeperTone

 30

SIGNAL EXAMPLES

Many complex and useful devices do much more than turn ON or OFF or DIM. They
communicate with Arduino by sending or receiving a series of 1's and 0's that convey
information (such as temperature values) according to some protocol. The software to do this is
more complex and we will usually use "libraries" of software that the Arduino team or other
people have written for us. When we figure out how to do something cool, we may put our code
in a Library and share it with others. See more about Libraries and how to install them:
http://arduino-info.wikispaces.com/Arduino-Libraries

• Servomotor (A Signal Output): Standard servos, like the one in the Starter Kit, are
controlled by ON-OFF signal pulses sent to them. They rotate their output shaft to a
position you command them to go to. You can connect your servo directly to a 3-pin
connector on the YourDuino.

o SERVO SOFTWARE SKETCH 1: http://arduino-
info.wikispaces.com/YourDuinoStarter_ServoSweep Connect your servo to Pin 9 on the
YourDuino 3-pin connector. Read the comments in the software!

o SERVO SOFTWARE SKETCH 2:
http://arduino-info.wikispaces.com/YourDuinoStarter_ServoPotPosition With your Pot
connected to Analog Pin 0 (First Analog pin) this example makes the servo follow
your pot position.

• Temperature Sensor (A Signal Input): The DS18B20 temperature

sensor in the Kit is an example of the low-cost but complex and
accurate sensors that are available. To connect this sensor, see
the photo and the details in the software comments.

o The DS18B20 connects with 3 wires: (Gnd) (Signal)(+5v)The
sensor is the small device with 3 pins in the center of the
photo.

o This sensor needs a "pullup resistor of about 5K ohms from
+5V to Signal pin. We show two of our 10K resistors
connected in parallel to make: 5K

o You also need to find, download and install two libraries that
do not come with Arduino itself. You will want to learn how
to do this to take advantage of the dozens of very useful libraries of software
that other Arduino users have shared online. See more about Libraries and how to
install them so you can use them HERE:

o The software has links to get the libraries you need.

Example Software for this Section:
http://arduinoinfo.wikispaces.com/YourDuinoStarter_TemperatureSensor

 31

Now you have the building blocks and concepts to make many different devices with an Arduino.
Look back at The Diagram we looked at in the beginning: http://arduino-
info.wikispaces.com/YourDuinoStarter#ArchDiag
Hey! You've used all those Input and Output devices and read the Software Sketches that
made them work. Could you pick some sensor and Read Sensor Inputs, make some Decisions in
software, and Take Actions to make something like one of these??

• Temperature control of a chicken coop with both heat lamps and ventilation fan.
[Temperature sensor and 2-channel relay]

• A flickering camp fire made with red and yellow LEDs
• A 6 inch diameter "Dial Thermometer" with a moving pointer showing your living room

temperature. [Temperature sensor, Servo]
• ?? What are your ideas ??

The Arduino Community
Almost the best thing about Arduino is the community of helpful people around the World who
communicate on the Net. Here are some good starting links:

• Arduino Projects: http://www.arduino.cc/playground/Projects/ArduinoUsers
• The official Arduino Discussion Forum: http://arduino.cc/forum/
• Project Guidance for Arduino: http://arduino.cc/forum/index.php/board,3.0.html

Where might you go from here??

Soon you may want to work on more complex projects. You will use more software libraries, get
and use other sensors and actuators, and maybe start communicating from Arduino to the Web.
You might even send yourself an SMS.

Other articles from YourDuino will also cover power: power for Arduino from regular outlets,
power from batteries, power for devices that need more than the USB connection can provide,
and controlling high power devices from Arduino.

We'd also like to hear your suggestions. Happy Building!
Please email comments, critiques, suggestions and questions to:

terry@yourduino.com

CONCLUSION

